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I. Introduction

This interim report describes the work completed in the last 12 months. It contains two
parts; the first part describes the results from modeling spacecrai_ charging potential during

electron beam injections into a background of neutral gas and plasma, whereas the second

part describes the simulation results about the radial expansion of an electron beam injected
into space plasma. We are currently revising both articles for submitting them to Journals for

publication. The first paper has been presented at the Spacecraft Charging Technology

Conference at Montreal in August 1989.
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Abstract

Injections of nonrelativistic electron beams from an isolated equipotential conductor

into a uniform background of plasma and neutral gas have been simulated using a two-

dimensional electrostatic particle code. The ionization effects on spacecraft charging are

examined by including interactions of electrons with neutral gas. The simulations show that

the conductor charging potential decreases with increasing neutral background density due to

the production of secondary electrons near the conductor surface. In the spacecraft wake, the

background electrons accelerated towards the charged spacecraft produce an enhancement of

secondary electrons and ions. Simulations run for longer times indicate that the spacecraft

potential is further reduced and short wavelength beam-plasma oscillations appear. The

results are applied to explain the spacecraft charging potential measured during the SEPAC

experiments from Spacelab 1.
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INTRODUCTION

Nonrelativistic electron beams have been injected from rockets and the Space shuttle

to stud5" beam propagation, instabilities and other space plasma problems in the ionosphere

[1]. Several experimental and theoretical studies have focused on the spacecraft charging

phenomenon during the electron beam injection [2]-[5]. At low beam current, Spacelab 2

experiments indicated that electron beams can propagate away after beam degradation and

expansion [6]. However, at high beam current, Space Experiments with Particle Accelera-

tors (SEPAC) during the Spacelab 1 mission indicated that the electron beam injection had

charged the spacecraft to a potential as high as the beam energy, which was 5 keV [2]. Neu-

tralization of spacecraft charging is therefore important for allowing the injected electron

beam to propagate away. SEPAC experiments have suggested that a large conductor surface

area for collecting currents from ambient plasma will reduce spacecraft charging.

It is also well known that neutral gas ionization by the electron beam can help neutralize

spacecraft charging. At altitudes below 160 km where neutral densities are high, electron beam

experiments on sounding rockets indicate that payload charging was reduced and sometimes

even completely neutralized [7]. Plasma enhancement associated with Beam Plasma Discharge

(BPD) [8] is believed to be responsible for the charging neutralization of sounding rockets.

During SEPAC electron beam experiments Marshall et al. [5] reported anomalous features in

the measurement of return current by Langmuir probe when an energetic electron beam was

injected into a dense cloud of Argon gas. They interpreted the anomalous current signature

as due to secondary electron fluxes escaping from the spacecraft and the formation of a double

layer structure. In all cases of SEPAC experiments the spacecraft potential charged by an
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electron beam was small relative to the beam energy when neutral gas is present.

The purpose of this paper is to model the effects of nentral gas ionization on spacecraft

charging due to electron beam injection. \Ve use a two-dimensional electrostatic particle code

to simulate the injection of electron beams from an isolated equipotential conductor into

uniform background of plasma and neutral gas. In this preliminary study we examine how

the spacecraft charging potential varies with neutral density.

Several simulation studies have examined the general relationship between the space-

craft charging and the electron beam injection in the ionosphere [9]-[13]. These studies show

that the positively charged spacecraft attracts the ambient and beam electrons to neutralize

the charging partially. Some electrons in the beam head, however, are accelerated forward

and propagate away. Winglee and Prichett [14] indicate that the spacecraft charging potential

varies with the the injection angle of the beam relative to the magnetic field lines. Eurther-

more, the spacecraft charging potential exceeds the beam energy when the spacecraft surface

is small relative to the return current region. Examining the surface effects of the spacecraft,

Lin and Koga [15] model the production of backscattered and secondary electrons generated

at the conductor surface. Their simulations indicate the spacecraft potential increases with

the reflection coeflqcient, which is defined as the ratio of electrons reflected from the spacecraft

surface.

Simulations of the interactions of an electron beam with neutral gas are dii_cult because

they require a large memory and a long computation time. In this conference Winglee [16]

examines the effects of a neutral gas cloud in the vicinity of the spacecraft on the beam

propagation and charging. In this study, we consider a uniform neutral gas background.
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Furthermore. weassumethat the electronsarescattered isotropically by neutral gaswhereas

Winglee [16] emphasizessmall anglescattering.

SIMULATION MODEL

To study electron beaminjection from a conductor, wemodified a 2-D particle-in-cell

code DARWIN, which wasoriginally developedat Los Alamos National Laboratory [17].

Here we present the simulation results in the electrostatic limit. We improve the modeling

by considering (1) the injection of an electron beam from a finite isolatedconductor and (2)

collisional ionization of neutrals by beam, background, and secondaryelectrons. Figure 1

illustrates the simulation geometry.

Wemodel the spacecraftasa rectangularconductor within the simulation system,which

injects electronsfrom the spacecraftsurfaceevery timestep. The numberof injectedelectrons

per time step per cell is Nc(nb/nc)vbAt where Nc is the number of ambient electrons per

cell, At is the sinmlation time step, and nb/n_ is the ratio of the beam density to background

density. We assign the positions of the injected particles as x = RvbAt where x is the distance

from the conductor surface, vb is the injection velocity, and R is a random number between

0 and 1 for each injected particle. In the y direction we randomly distribute the injected

particles across the beam. Therefore the injected particles fill in the fan between x = 0 and

x = vbAt. In this study we assume that the spacecraft surface absorbs all particles striking

the surface and accumulates the charge.

We use the capacity matrix method [18] to treat the spacecraft surface as a finite isolated

equipotential conductor in a background plasma. The capacity matrix Cij relates the charge,
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qi, on each grid point on the spacecraft to the corresponding potential (I)5 through

j

where the sum j is over every grid point on the spacecraft. The capacity matrix is obtained

by placing a unit charge on one point of the spacecraft surface with all other points zero and

then solving for the potential. The values of the potential at each point on the spacecraft

represent one column in the inverse capacity matrix A = C -1. Repeating the process for each

node then generates the full inverse matrix. The capacity matrix is obtained from the inverse

of this matrix. This process is carried out only once at the beginning of the program. During

the program the code first solves Poisson's equation for the electric potential _0 with the

charge evenly distributed on the spacecraft surface. Second, it uses the capacity matrix of the

conductor to redistribute the charge and maintain the spacecraft surface at an equipotential

using the formulae:

= - eoj) (2)
J

=F, c,j¢o,/ F_,c,j (a)
ij i1

where Aqi is the charge that is added to each grid point on the spacecraft. Using the redis-

tributed charge density, the code again solves Poisson's equation for the electric potential of

the spacecraft.

We use a periodic boundary condition for the lower boundary at y = 0 and the upper

boundary at y = Ly where Ly is the simulation length in the y direction. The electrostatic

potential at x = 0, ¢(x = 0, y), is constant. We assume the potential is zero at the right
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boundary at a: = L_ where L_ is tile simulation length in the ,r direction. The right boundary

condition approximates the potential at tile infinity.

In our model we include the interaction of beam, background, and secondary electrons

with neutral particles following tile approach of Machida and Goertz [19]. The neutral par-

ticles are assumed uniformly distributed through the system. To allow the simulations to

run for much longer times, a very high density neutral region is added at the right hand side

of the simulation box. Beam electrons entering into this region are slowed down enough by

collisions so that they are not reflected back into the simulation box with high velocities. All

neutral particles are assumed to have a Maxwellian velocity distribution.

The ionization rate of the neutral particles is determined from the incoming electron

velocity, the neutral density, and the ionization collisional cross section. The ionization colli-

sional cross section varies with the incoming electron energy according to a fit to an experi-

mental curve for 02 [20]. We first calculate the ionization cross section based on the particle's

energy and then calculate the average collisional ionization frequency from the cross section.

Assuming that the event occurrence follows an exponential probability distribution, we as-

sign a probability Pi of collisional ionization to the beam electrons at each time step from the

collision frequency. The probability is then compared with a uniform set of random numbers

Ri between 0 and 1. A collision occurs if Pi > Ri.

A fixed ionization energy is subtracted from the incident particle energies after the

collision. The velocity vectors of the electrons and ions after the collision are calculated from

momentum conservation, energy conservation, and the assumption that the collisions are

head on. Random directional angles are assigned to the particles after the collision. Other



..,7

collisional processes can be handled in the same way as ionization collisions by using the

appropriate collision frequency.

Background plasma ions and electrons are initialized uniformly in the system with a

uniform magnetic field in the x direction. Both the background ions and electrons have

Maxwellian velocity distributions with the same temperature, Te = Ti where Ye and Ti are

the electron and ion temperatures, respectively. At the right and left boundary, the code

specularly reflects all particles.

SIMULATION RESULTS

The simulation uses a 512A x 128A grid in the x and y directions respectively. The

spacecraft is represented by a rectangular box centered on x = 102A and y = 64A with

size 4A x 32A in the x and y directions respectively. The grid size, A, equals the Debye

length of the ambient electrons defined as 3,d = ac/_ope where ac = (2T_/me) 1/2 is the thermal

velocity of the ambient electrons and wp_ is the ambient electron plasma frequency. In the

simulations ac = 0.001c where c is the speed of light, a unit of the simulation. We choose the

secondary ion to electron mass ratio to be 1836. We assume the electron gyrofrequency f_

to be 0.5wpe, which is close to the ionospheric value of 0.3oop_. The simulations use a time

step At = 0.05@-_ and 131,072 particles for the background plasma. The electron beam has

a width of 2A, an injection velocity of vb = 10at, and zero thermal velocity. In this study,

the density ratio nb/no is 10 where nb and no are the densities of the electron beam and the

ambient electrons, respectively. In SEPAC experiments this ratio was approximately 100 for

a 100 mA beam.
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Figures 2 and 3 present the modeling results of an electron beanawith no neutral

background. The phasespaceplot at cope/= 30 indicates that the stagnation point of the

injected electron beam is very closeto tile conductor surface(Figure 2a). Also it. showsthat

beamelectronsat the front areacceleratedto velocitiesabovethe initial beamvelocity, dueto

the buildup of beamelectronsbehind the front of the beamhead. Figure 2b, the configuration

spaceplot, showsthat the electron beam expands radially due to mutual repulsion. The

beamexpandsa maximum width of 40A near the spacecraftsurface.Figure 3 showsthe time

variation of the spacecraftpotential for the duration of the simulation. The oscillations in

the potential correspondto the backgroundplasmafrequency. Note that after the quick rise

in the potential to 7.5%of the beamenergythe averagepotential is approximately 70%of the

beam energy.

Figures 4-6 presentresults of an electron beam injected into a uniform backgroundof

neutral particles. The neutral number density is 1014 cm -a corresponding to a pressure of

l0 -4 Torr at room temperature. The beam phase space plot at a.'pet = 30 in Figure 4a shows

that the stagnation point of the beam is farther away from the spacecraft than the case

with no neutral background. The beam electrons travel farther before being substantially

slowed down because secondary electrons created from ionization of neutrals impinge on the

spacecraft and reduce the charge. The configuration space plot in Figure 4b shows beam

expansion similar to the case with no neutral background at wp_t = 30. The maximum width

remains at about 40A. The phase space plots of secondary electrons are shown in Figure 5.

Figure 5a indicates that some secondary electrons near the spacecraft have been scattered

to energies comparable to the beam energy. Most secondary electrons are produced near the
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spacecraftsurface while someare producedin tile wake region of the spacecraft,as shown

in the configuration spaceplot (Figure 5t)). Secondaryelectrons are producedin the wake

as backgroundelectrons are acceleratedtowards the chargedspacecraftand ionize neutral

particles. Figure 6 presentsspacecraftpotential as a function of time. The oscillations in

the potential again correspondto the backgroundplasmafrequency.After a quick rise in the

potential to 7,5%of the beamenergy,the averagepotential energyof the spacecraftdrops to

about 40% of the beam energy. This reduction in the potential is causedby the increasein

plasma density around the spacecraftfrom ionizations. Figure 7 showsspacecraftpotential

at %,_t = 30 for various values of backgroundneutral density. This figure indicates that

increasingthe neutral density reducesthe spacecraftpotential. Two factors contribute to the

reduction in the charging potential. First, higher neutral densitiesresult in more collisional

ionizationsand therefore a larger numberof secondaryelectronsto neutralize the spacecraft.

Second,higher neutral densities result in shorter mean free paths for the beam electrons.

Scattering of the beam electronsoccurscloser to the spacecraft and fewerbeam electrons

escape.In the highest neutral density caseof 10is cm-a, the potential is reducedto 10%of

the beam energy. Also the spacecraftpotential oscillations increasein frequencydue to the

largeincreasein the plasma density near the spacecraft.

Figure 8 showsphasespaceplotsof beamand secondaryelectronsfrom alongsimulation

run, ,ap,t= 60. The neutral density is 1014cm-a, the sameasin Figures 4-6. At toper = 60,

many beam electrons have been scattered by collisions to lower velocities (Figure 8a). Particles

at the beam front no longer travel at velocities comparable to the initial beam velocity.

Note that newly injected beam electrons are travelling longer distances at nearly their initial



injection velocity. They set up short wavelength beam-plasma oscillations which are apparent

in the phase space plot. Figure 8b indicates that tile secondary electrons are accelerated

to velocities compara.rble to the beam velocity within the beam-plasma oscillation regions.

These secondary electrons can be accelerated to the point where they contribute significantly

to the collisional ionizations. A history of the spacecraft potential (Figure 9) shows that the

potential is about 40% of the beam energy at wp_t = 30 and is reduced to 25% of the beam

energy at _op_t = 60. Running the simulation for a longer time results in more secondary

electrons produced near the spacecraft and also gives secondary electrons generated farther

away from the spacecraft the time to respond to the positively charged spacecraft.

DISCUSSION

We have simulated the injection of a nonrelativistic electron beam from a finite con-

ductor with a beam density much larger than the ambient density, nb/no = 10, and have

incorporated secondary electron and ion production due to collisional ionizations. The simu-

lation results suggest that the uniform neutral background reduces the amount of spacecraft

charging. Collisional ionization of the neutral particles by beam electrons results in an in-

crease of secondary electrons. These secondary electrons help neutralize the spacecraft. The

positively charged spacecraft accelerates background electrons to velocities high enough for

them to ionize neutral particles, producing secondary electrons and ions in the wake region

of the spacecraft. Another interesting result is that the stagnation point of the electron

beam moves farther away from the spacecraft. As the spacecraft potential reduces, the beam

electrons are able to travel longer distances before being stopped.

9
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The simulations reported here appear becauseof limitation in computer time. The

simulation runs for longer time periods indicate that charging is further reduced at later

time, allowingnewly injectedbeam electronsto leavethe spacecraftregion with nearly their

initial velocities. Theseelectronsset up short wavelength beam-plasmaoscillations which

acceleratesecondaryelectronsto velocities close to the beam velocity.

In the future we plan to include effects from other collisional processes such as elastic

scattering, charge exchange, photoionization, and ion elastic collisions. Since the current

collision scheme assumes head on hard-sphere collisions, high velocity beam electrons can

be scattered to large angles. Therefore, we plan to improve the collision model to include

quantum mechanical effects. Another goal is to run the simulations much longer to determine

if Beam Plasma Discharge can be observed.
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FIGI:RE C_:APTIONS

Fig. I. Simulation configuration.

Fig. 2. Results of simulation for 77b/no = 10 and vb/ac = l0 at _-'7,et = 30. (a) The beam

electron phase space in the x - _,_ plane and (b) the positions of beam electrons in the x

- y plane. The position is normalized by the Debye length and the velocity is normalized

the beam velocity.

Fig. 3. Time history of the conductor potential, ¢o, normalized to the beam energy Eb. For

this simulation, rib�no = 10 and vb/ac = 10.

Fig. 4. Results of simulation with a uniform neutral background for rib/no = 10 and vb/ac = 10

at w_t = 30. (a) The beam electron phase space in the x - v_- plane and (b) the positions

of beam electrons in the x - y plane.

Fig. 5. Results of simulation with a uniform neutral background (a) The secondary electron

phase space in the a" - v_ plane and (b) the positions of secondary electrons in the x - y

plane.

Fig. 6. Time history of the conductor potential, ¢o, normalized to the beam energy Eb.

Fig. 7. Spacecraft potential versus neutral density.

Fig. 8. Results of simulation with a uniform neutral background at wp_t = 60. (a) The beam

electron phase space in the x - t,_ plane and (b) the secondary electrons in the x - v_ plane.

Fig. 9. Time history of the conductor potential, ¢o, for wp_t = 60.
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Part 2

Sinmlation of Radial Expansion of an Electron Beam Injected into a

Background Plasma

,1. Koga and C. S. Lin

Department of Space Sciences

Southwest Research Institute

San Antonio, Texas 78284

Abstract

A two-dimensional electrostatic particle code has been used to study the beam radial

expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor

into a background plasma. The simulations indicate that the beam radius is generally pro-

portional to the beam electron gyroradius when the conductor is charged to a large potential.

The simulations also suggest that the charge buildup at the beam stagnation point causes

the beam radial expansion. From a survey of the simulation results, it is found that the ratio

of the beam radius to the beam electron gyroradius increases with the square root of beam

density and decreases inversely with beam injection velocity. This dependence is explained in

terms of the ratio of the beam electron Debye length to the ambient electron Debye length.

These results are most applicable to the SEPAC electron beam injection experiments from

Spacelab 1, where high charging potential was observed.



INTRODUCTION

Over the past 10years,nonrelativistic electron beamshave beeninjected into a back-

gronndplasmaand neutral gas to study beampropagation, instabilities, spacecraftcharging,

and other spaceplasma problems in the ionosphere [1-5]. Someexperiments specifically

examinedthe radial expansioncharacteristicsof the beam [2-3], indicating that the beamex-

pansioncharacteristicsdependin a complexwayon beam propagation angleand spacecraft

charging. Many simulation studies have studiedthe general relationship betweenspacecraft

chargingand the electron beaminjection in the ionosphere[6-12]. However,few havefocused

on understandingthe radial expansionphenomenon.The purposeof this paper is to report

our simulation study on the beam radial expansion.

In the VehicleCharging and Potential (VCAP) experiment on the SpaceShuttle Orbiter

mission,the STS-3cameraimageda narrowcollimation of anelectronbeamfired transverseto

the magneticfield for 0.3m before the light emissionof the electron beamabruptly decreased

[2-3]. The reasonfor the sudden decreasein light emission is unclear. However, it may

suggestthat appreciable beam radial expansionseemedto occur due to an increasein the

negativechargedensity of the beam. After the point of beam spreading, the beam evolved

into a hollow cylindrical shell structure whichpropagatedparallel to the local magneticfield.

The vehicleelectric potential inducedby theseelectronbeam firings wasnormally a few volts

to a few tens of volts with a beam energyof 1 keV [2].

SpaceExperiments with Particle Accelerators(SEPAC) during the Spacelab1 mission

indicated that the electron beam injection had chargedthe spacecraftto a potential ashigh

as the beam energy,which was 5 keV [5]. Becausethe ambient plasma cannot neutralize



the electron beam and the spacecraft, the net beam chargeand tile spacecraftchargingare

important in this casein determining beam propagationand expansion.

In laboratory experiments,Kellogg et al. [4] studiedradial expansionof electronbeams

injected into a backgroundplasma and neutral gas. When the electron gun wasgrounded,

the envelopeof the beamwas twice the beam electrongyroridus radius p_ where p_ = Vb/_¢_

for cross-field injection. For the aligned beam the radius of the envelope was rb _ 0.25pc.

However, when the electron gun was allowed to float and no background plasma was present,

the electron beam appeared to have a diameter approximately twice the beam electron gy-

roradius. In these cases the gun potential rose to the electron beam accelerator potential.

Therefore, charging seems to play an important role in the beam radial expansion.

Several two-dimensional simulations show that high density electron beams can prop-

agate in the plasma because the net beam charge has caused the beam to expand radially

and reduced the beam density [9-12]. In particular, Winglee and Pritchett [11] have simu-

lated cross-field and parallel electron beam injection, concentrating on moderate spacecraft

charging. For cross-field injection the beam is found to form a hollow cylinder of radius ap-

proximately equal to the beam gyroradius and width of about 2/_Db where .XDb = vb/_ob. The

beam width is believed to be caused by repulsive forces associated with a net negative charge

within the beam. For parallel injection slower beam electrons are overtaken, causing a net

repulsive force to push the beam electrons outward to a cylinder thickness comparable to the

cross-field injection case. The maximum perpendicular velocity was found to be comparable

to the parallel beam velocity.

Analytic calculations [13] for electron beams injected parallel to magnetic field lines
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have shown that space charge effects play an important role during the initial phase of beam

expansion. Furthermore, the magnetic field determines the 1)earn radius and beam density.

However, the calculations did not take into account any possible beam instabilities.

In this paper we study radial expansion of electron beams injected parallel to the mag-

netic field. We have used a two-dimensional electrostatic particle code to simulate the electron

beam injection from an isolated finite equipotential conductor into a plasma. In contrast to

Winglee and Prichett [12], we concentrate on cases of high spacecraft charging, which are

more applicable to SEPAC electron beam firings. It is shown that radial expansion is sig-

nificant. We also surveyed the simulation results to determine the dependence of the beam

expansion on the background magnetic field, beam density, and beam velocity.

SIMULATION MODEL

To study electron beam injection from a conductor, we modified a 2-D particle-in-

cell code, DARWIN, which was originally developed at Los Alamos National Laboratory

[14]. Here we present the simulation results in the electrostatic limit. Realistic modeling of

beam injection from a spacecraft required injecting an electron beam from a finite isolated

conductor. The simulation geometry is shown in Figure 1.

Particles are injected from the spacecraft surface in the simulation box every time step.

The number of injected electrons per time step per cell is Nc(e/q_)(nb/nc)vbAt where Nc is

the number of ambient electrons per cell, At is the simulation time step, nb/nc is the ratio of

the beam density to ambient density, and e/q_ is the ratio of the ambient electron charge to

the beam electron charge. The beam electrons have fractional charge and mass, which allows
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an increase in the number injected per time step. This larger number for the same beam

density reduces numerical noise. These particles are placed in the sinmlation box at positions

x = RvbAt where x is the distance from the conductor surface, t,b is the injection velocity, and

R is a random number between 0 and 1 for each injected particle. This method tends to fill in

the fan between x = 0 and x = vbAt. The injected particles are randomly distributed across

the beam in the y direction. All particles which strike the spacecraft surface are absorbed

and their charge is accumulated.

Treating the spacecraft surface as a finite isolated equipotential conductor in an ambient

plasma was accomplished by using the capacity matrix method [11,1,5]. The capacity matrix

relates the charge on each grid point on the spacecraft to the corresponding potential.

q, = _ CijCj (1)
J

where Cij is the capacity matrix, (Pj is the spacecraft potential, and the sum j is over every

grid point on the spacecraft. The capacity matrix is found by placing a unit charge on one

point of the spacecraft surface with all other points zero and then solving for the potential.

The values of the potential at each point on the spacecraft represent one column in the inverse

capacity matrix A = C -1. Repeating the process for each node then generates the full inverse

matrix. The capacity matrix is obtained from the inverse of this matrix. This process is

carried out only once at the beginning of the program. During the program the code first

solves Poisson's equation for the electric potential (I)0 with charge evenly distributed on the

spacecraft surface. Second, it uses the capacity matrix of the conductor to redistribute the
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charge and maintain the spacecraft surface a.t an equipotential using the formulae:

Aqi = __, Cij(_ - q)oj) (2)
J

= F_, (3)
ij ij

where _qi is the charge that is added to each grid point on the spacecraft. Using the redis-

tributed charge density, the code again solves Poisson's equation for the electric potential of

the spacecraft.

We use a periodic boundary condition for the lower boundary at y = 0 and the upper

boundary at Y = Lu where Ly is the simulation length in the y direction. The electrostatic

potential at x = 0, 8(x = 0, y), is constant. We assume the potential is zero at the right

boundary at x = Lx where Lx is the simulation length in the x direction. The right boundary

condition approximates the potential at infinity.

Ambient ions and electrons are initialized uniformly in the system with a uniform mag-

netic field in the x direction. Both the ambient ions and electrons have Maxwellian velocity

distributions with the same temperature, T_ = Ti where Te and Ti are the electron and ion

temperatures, respectively. At the right and left boundary, the code specularly reflects all

particles.

SIMULATION RESULTS

The simulation uses a 512A x 128A grid in the x and y directions, respectively. The

spacecraft is represented by a rectangular box centered on x = 102A and Y = 64A with size

4A x 32A in the x and y directions, respectively. The grid size, A, equals the Debye length of



the ambient electronsdefinedasAd= ac/wp_ where ac = (2re�me) 1/2 is the thermal velocity

of the ambient electrons and _op_ is the ambient electron plasma frequency. We choose the

ion to electron mass ratio to be 100, and ac = 0.001c where c is the speed of light., a unit of

the simulation. We use a reference electron gyrofrequency f_c_ of 0.25,.,7,_ , which is close to

the ionospheric value of 0.3cop_. The simulations use a time step _t = 0.05a,,p-_1 and 131,072

particles for the ambient plasma. For the reference case the electron beam has a width of 4A,

an injection velocity of t'b = 10ac along the x axis, zero initial thermal velocity, and a density

ratio of nb/nc = 10.

Figures 2-4 show results of electron beam injection for the reference parameters. The

phase space plot x - _,_ at _op_t = 30 in Figure 2a indicates that the point at which beam

electrons are stopped (stagnation point) is very close to the conductor surface. Due to the

high beam density the spacecraft becomes positively charged, causing the beam electrons to

be rapidly drawn back to the spacecraft surface. The average electrostatic potential of the

spacecraft in this case is _ 94% of the beam energy. Some electrons at the front of the

beam are accelerated to velocities higher than the original beam velocity. This is due to

the bunching of beam electrons behind the beam head. Also some returning beam electrons

overshoot the spacecraft and are drawn back on the wake side. The configuration space plot

given in Figure 2b shows that the electron beam expands radially. Figure 3a shows a contour

plot of the beam density where the contour line delineates the beam edge. From this plot

the beam radius is approximately rb = 40A. The beam electron gyroradius p_ = vb/gt¢_ is

also 40A where vb is the initial beam velocity. It is apparent from earlier configuration space

plots that the maximum beam expansion occurs near the stagnation point, which is very



close to the spacecraft surface. The highest beam density is at the stagnation point of the

beam (Figure :31)). This is in agreement with analytical results for one-dimensional electron

beam injection into a vacuum [16]. Physically, the high density at the stagnation point is

understood in an approximate sense by tile conservation of flux nbt, b. At the stagnation

point, where the average beam velocity is smallest, the density should be highest assuming

substantial expansion of the beam has not occurred.

Figure 4a and 4b show that the maximum transverse electric field E_ and the maximum

longitudinal electric field Ex occur where the beam density is highest. The transverse velocities

to which the beam electrons are accelerated depend on the time spent in the stagnation region,

where the transverse electric fields are largest. This can be estimated from the width of the

transverse electric field region, approximately 8/5, and the initial beam velocity. From these

values it is apparent that the beam particles can be accelerated to 75% of the initial beam

velocity. In general beam electrons travel through the stagnation region with velocities lower

than the initial beam velocity. So they spend more time in the stagnation region and are

accelerated to higher velocities. After the stagnation region the transverse electric field Ey

is smaller (Figure 4a) and the average beam velocity is higher (Figure 2a). Therefore, the

beam electrons receive their largest tranverse kick very close to the spacecraft and experience

smaller transverse impulses from that point on.

Variation with Magnetic Field Strength

Figure 5 shows beam density plots at _pet = 30 where the contour lines indicate the

beam envelope. The magnetic field f_ce/wp_ is 0.25, 0.5, and 1.0 down the page with all other



parameters fixed..Note that the maximum beam radius decreases with increasing magnetic

field. The ratio of the maximum beam radius to the electron gyroradius rb/p_ is approxi-

mately 1 for each of these cases. This indicates that independent of the magnetic field the

beam electrons receive the same transverse kick and expand to pc in the range of ionospheric

magnetic field values. In Figure 5c, where ftc_/cop_ = 1.0, no beam electrons are in the wake

region of the spacecraft. The maximum width beam electrons achieve, 2p_, is smaller than

the spacecraft width. So all returning beam electrons strike the spacecraft surface.

Variation with Beam Density

Figure 6 shows simulation results at _opet = 30 varying the beam to ambient plasma

density ratio nb/nc from 1 to 20 for the cases of _ce/wp_ = 0.25 (solid line) and 0.5 (dotted line).

The ratio rb/p_ is between 0.725 for nb/n_ = 1 and 1.3 for nb/n_ = 20. The maximum beam

radius gradually increases with beam density. This indicates that the transverse kick that

the beam electrons receive gradually increases with beam density. The relative magnitude of

the transverse kick can be obtained from the average velocity of the beam electrons through

the stagnation region. The average velocity gives a rough idea of the time that the beam

electrons are accelerated by the transverse electric fields Ey in the stagnation region. Figure

7 shows the average velocity of beam electrons at the stagnation point versus beam density

for _/%,_ = 0.25 (solid line) and 0.5 (dotted line) at o0_,t = 30. The velocity is averaged

across the beam and the stagnation point is taken to be the point where the longitudinal

electric field E_ is a maximum. The average velocity decreases with increasing beam density

for both values of magnetic field. This indicates that beam electrons spend more time in the



stagnationregionfor higherdensity beamsand are, therefore,acceleratedto highertransverse

velocities. The ratio of the electron beam Debyelength )_D_ to the ambient electron Debye

length ,\,t, which is

_
_d a c n b

(4)

gives an understanding of this velocity trend. The electron beam Debye length is an indication

of the charge separation distance between the spacecraft and the beam stagnation point. The

ambient electron Debye length indicates the distance above which ambient electrons neutralize

excess charge. As this ratio decreases the beam electrons feel the Coulombic potential of

the spacecraft more since ambient electrons have a harder time shielding the effects of the

retarding potential drop. Therefore, the beam electrons travel with lower velocities. This

ratio decreases with increasing beam density nb as n_ -_/2 following the trend of the average

velocity in Figure 7.

Variation with Beam Velocity

Figure 8 shows the beam radius normalized to the electron gyroradius rb/p, as a function

of initial injection velocity Vb at cop_t = 30. The injection velocity Vb/ac where a_ is the ambient

electron thermal velocity is varied between 2.5 and 20.0. All other parameters are the same as

in the reference case. The radial expansion is largest for small velocity injection and smallest

for high velocity injection. The relative magnitude of the transverse kick can again be inferred

from the average velocity of the beam electrons through the stagnation region. Figure 9 shows

the average velocity of beam electrons at the stagnation point versus initial beam injection

9
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velocity at ,o_,_l= 30. Tile averagevelocity increaseswith the initial beam injection velocity.

Bealn electronsspendmore time in the stagnation region for lower injection velocitiesand

are, therefore, acceleratedto higher relative transversevelocities. This velocity trend can

also be interpreted fl'om the ratio of the beamelectron Debyelength to the ambient electron

Debyelength. This ratio increaseslinearly with the initial beam injection velocity. As the

beaminjection velocity increases,the ambient electronsaremoreable to shieldexcesscharge

buildup over the beam electron Debyelength. Therefore, the beam electrons travel with

higher velocities through the stagnation region,which is in agreementwith Figure 9.

DISCUSSIONAND CONCLUSION

We have examinedthe radial expansionproperties of a nonrelativistic electron beam

injected along magnetic field lines into a background plasma. We have concentrated on

high beam current cases where spacecraft charging is significant. In our reference case with

rib�no = 10 and vb/ac = 10, the beam expanded to twice the beam electron gyroradius fib.

The beam electrons receive a large transverse kick from beam electrons which have built up

at the stagnation point. This kick, which occurs very close to the injection point, determines

the beam envelope from that point on. We have found that the transverse energization of

the beam electrons is independent of the strength of the magnetic field for values between

gtc_/wp_ = 0.25 and 1. The beam envelope is twice the beam electron gyroradius p_. We have

also found that the beam envelope increases with beam density. The average velocity of beam

electrons through the stagnation region decreases with increasing beam density. The average

velocity indicates the time beam electrons spend in the stagnation region and, therefore, how
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long beam electrons are accelerated by the transverse electric fields. The final transverse

velocity of the bean] electrons and, thus, the beam envelope increases with beam density.

Variation of tile initial beam injection velocity indicates that the beam envelope decreases

with increasing beam injection velocity. The average velocity of beam electrons through the

stagnation region increases with beam injection velocity. Therefore, beam electrons with high

injection velocity are accelerated to lower relative transverse velocities than beam electrons

with low injection velocities. The ratio of ADb/)_d, which is an indication of how well beam

electrons are shielded from the charged spacecraft surface by the ambient electrons, can be

used to explain the dependence of beam radius on beam density and beam injection velocity.

This dependence is evident from Figure 7 where the average beam velocity at the stagnation

point drops off approximately as n-_ 1/2 and from Figure 9 where the average velocity increases

almost linearly with beam injection velocity vb.

The spacecraft potential energy in each of these runs varied between 60% and 100% of

the beam energy except for the cases of low beam density. These results are most applicable

to the SEPAC electron beam injection experiments where the Shuttle was charged to the

beam energy. In future work we will address the problem of beam radial expansion when

collisional ionizations of neutrals by the beam electrons is taken into account.
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FIGURE CAPTIONS

Fig. l. Simulation configuration.

Fig. 2. Results of simulation for 7_b/7_c= 10 and vb/ac = 10 at w_et = 30. (a) The beam

electron phase space in the x-v_ plane and (b) the positions of beam electrons in the x-y

plane. The position is normalized by the Debye length and the velocity is normalized by

the initial beam injection velocity.

Fig. :3. Density plots of beam electrons at wp_t = 30 for _r _ / n _ = 10 and r[',b/a c = 10. (a)

Contour lines delineate beam envelope. (b) Profile of beam density along beam showing

maximum density close to spacecraft surface.

Fig. 4. Profiles of maximum field quantities across beam at wp_t = 30. (a) Maximum trans-

verse electric field Ey and (b) maximum longitudinal electric field E_-.

Fig. 5. Density plots of beam electrons at wpet = 30 for nb/7_c = 10 and _'_b/ac = 10. Contour

lines delineate beam envelope, ac_/wpe = (a) 0.25, (b) 0.5, and (c) 1.0

Fig. 6. Electron beam envelope radius rb/p_ versus nb/rtc at _p_ = 30 for vb/ac = 10.

Fig. 7. Average velocity v,: at the stagnation point normalized to ambient electron thermal

velocity a_ versus rzb/n_ at wp_ = 30 for vb/ac = 10.

Fig. 8. Electron beam envelope radius rb/pe versus initial beam injection velocity vb/a_ at

c@, = 30 for nb/n_ = 10.

Fig. 9. Absolute value of average velcity v, at the stagnation point normalized to ambient

electron thermal velocity a_ versus initial injection velocity vb/a_ at wp, = 30 for nb/nc =

10.



Y

A

Ambient Plasma

beam

• B

X

A

Fi_el



Vx

Vb

Y
A

3"0 t a) J _ J
1.5 ,.. --

,.. ".'. _..,' .. ,.,..-..._'_ _.k:.o-'

poMh'°'r" . .--

-1.5 I

-3.o I I I
0

1281 b)

• .. .';'.:,'_-"_

"-., ':,_.;..._.L" •
• . . ,;o:":_,_ .'.,:.*-; ;,::..m

..... __..-'_¢_oi
0

x

zX

I I I

__ii. ' "_, ,
_JS_-_. • . , . _._ ._;_.:P,,'.,._._

• • • _;_... J.:'. _. .. ....

. ,...,,.. :,:_ ..,.. ,, -. .. . ... ".. :._'." ",,,,.., .: : "./.. .. ":

_,,. a.. o • o . • . • •

_..',_,,_..:,"_,_:,'..e'-'.'"";_.";.'c.,'.'.'..r.'..".'','" "." • ". '" -. .... ' ';

.,,.,.,.
_N"-:;%_.""'" " ' " "" " "' " ".... "'"''"
__,'.;:., .:,. .- . . : ..... . . . ,
__-._,_.
,_,__:,:,._.-:.. ,--

I I I

x

512

512

Figure 2



Y
A

128

oo

a) I i I

I I I

X

512

nb

nc

0.6

0.4

0.2

0.0

b)

0

I 1 I

_ _.=IL_ ...._ _ •.

X

_.1

512

Figure 3



1.0

1Eytmax

xlO 2

IEx max

-2
xlO

0.8

a) l i

0.4

0.2

4.0

0.6- I

0.00 5 l
x 512

b) i I I

3.0

2.0

1.0

0.0
0 x 512

Figure 4



128

Y
A

0

I

Y
A

128

_b) I I I

_., , ([,_ '; ____.i',_". _.-;_._.__
'_ " ,= R,,'f

_, £ ,.. ,. =1 & , dr

o_ I I I

Y
A

128
c)

0 1
0

I I I

[ I I

X

A
Figure 5

512



' T .i

==_

2.0

rb

Pe

1.5

1.0

0.5 _

0 5 10 15 20

n b

nc

25

Figure6



' • a p

I0

v x

a.c

0

! ! I !

5 10 15 20

11b

nc

25

Fi_e7



2.0

r b

Pe

1.5

1.0 ....................

0.5

0,0 I I I I

0 5 10 15 20

V b

ac

25

Figure8



• II O _ _p

0
I I I i

5 10 15 20

v b

ac

25

Figure 9


